Unitary equivalence to a complex symmetric matrix: a modulus criterion

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unitary Equivalence to a Complex Symmetric Matrix: A Modulus Criterion

KEY WORDS, SUBJECT CLASSIFICATION The manuscript must be accompanied by a brief abstract, no longer than 100-150 words. It should make minimal use of mathematical symbols and displayed formulas. Mathematics Subject Classification (2000) with primary (and secondary) subject classification codes and a list of 4-5 key words must be given.

متن کامل

Unitary Equivalence to a Complex Symmetric Matrix: Low Dimensions

A matrix T ∈ Mn(C) is UECSM if it is unitarily equivalent to a complex symmetric (i.e., self-transpose) matrix. We develop several techniques for studying this property in dimensions three and four. Among other things, we completely characterize 4×4 nilpotent matrices which are UECSM and we settle an open problem which has lingered in the 3×3 case. We conclude with a discussion concerning a cru...

متن کامل

A unitary similarity transform of a normal matrix to complex symmetric form

In this article a new unitary similarity transformation of a normal matrix to complex symmetric form will be discussed. A constructive proof as well as some properties and examples will be given.

متن کامل

Symmetric states: local unitary equivalence via stabilizers

We classify local unitary equivalence classes of symmetric states via a classification of their local unitary stabilizer subgroups. For states whose local unitary stabilizer groups have a positive number of continuous degrees of freedom, the classification is exhaustive. We show that local unitary stabilizer groups with no continuous degrees of freedom are isomorphic to finite subgroups of the ...

متن کامل

Using Complex-Orthogonal Transformations to Diagonalize a Complex Symmetric Matrix

In this paper, we propose the use of complex-orthogonal transformations for nding the eigenvalues of a complex symmetric matrix. Using these special transformations can signiicantly reduce computational costs because the tridiagonal structure of a complex symmetric matrix is maintained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operators and Matrices

سال: 2011

ISSN: 1846-3886

DOI: 10.7153/oam-05-19